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1 Eigenvectors. Eigenvalues

Last lecture we saw, that in order to find vectors, “stretched” by the operator with matrix A,

we need to solve the characteristic equation

det(A− λI) = 0, (1)

which will give us different λi’s — coefficients, showing, how the vectors are changed after

applying the operator. Now we will give the following definition.

Definition 1.1. Let V be a vector space, and let A be a linear operator in vector space V .

Then the vector x is called eigenvector of the operator A is there exist a number λ, which is

called eigenvalue such that

A(x) = λx.

So, our goal is to find eigenvectors, since the following proposition holds:

Proposition 1.2. Let V be an n-dimensional vector space, and A be a linear operator. Then

if there are n linearly independent eigenvectors, then the matrix of A is diagonal in the basis,

consisting of eigenvectors.

So far we know how to find λi’s — eigenvalues of the operator. In order to find eigenvectors,

we need to solve the system

(A− λiI)x = 0 (2)

for every found eigenvalue λi.

We will give an example of computing eigenvalues and eigenvectors.

Example 1.3. Let A =

(
1 −3

1 5

)
. Let’s compute its eigenvalues and eigenvectors.

A− λI =

(
1− λ −3

1 5− λ

)
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det(A− λI) = (1− λ)(5− λ) + 3

= 5− 6λ + λ2 + 3

= λ2 − 6λ + 8.

The roots of this equation are λ1 = 2 and λ2 = 4. Now we’ll find eigenvectors corresponding to

these eigenvalues.

λ = 2. Let’s subtract λ’s from the diagonal. We’ll get the following matrix, and the system:

(
−1 −3

1 3

)
,

{
−x − 3y = 0

x + 3y = 0

From this system it follows that x = −3y, so each vector of the form (−3c, c), i.e. (−3, 1)

is an eigenvector corresponding to the eigenvalue λ = 2.

λ = 4. Let’s subtract λ’s from the diagonal. We’ll get the following matrix, and the system:

(
−3 −3

1 1

)
,

{
−3x − 3y = 0

x + y = 0

From this system it follows that x = −y, so each vector of the form (−c, c), i.e. (−1, 1)

is an eigenvector corresponding to the eigenvalue λ = 4.

So, in the basis, consisting of the vectors e′1 = (−3, 1) and e′2 = (−1, 1) the matrix of the

corresponding operator has form (
2 0

0 4

)

Now we can check our formula D = C−1AC, where D is a diagonal form of the matrix, and C

is a change-of-basis matrix. We have

C =

(
−3 −1

1 1

)
, C−1 =

(
−1/2 −1/2

1/2 3/2

)
,

so

C−1AC =

(
−1/2 −1/2

1/2 3/2

)(
1 −3

1 5

)(
−3 −1

1 1

)
=

(
−1 −1

2 6

)(
−3 −1

1 1

)
=

(
2 0

0 4

)
.

In the same way we can compute eigenvalues and eigenvectors for larger matrices, but it

will require solving equations of degree higher than 2. Since we don’t have formulae for such

equations, we should guess roots of the characteristic equation.
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2 Properties of eigenvectors of an operator

Before start studying properties of eigenvectors and eigenvalues we will recall some definitions.

Let V be a vector space, and let A be a linear operator.

Definition 2.1. The vector x is called an eigenvector of A if there exists number λ such that

A(x) = λx.

Such number λ is called an eigenvalue.

To determine eigenvalues we used characteristic polynomial.

Definition 2.2. Let A be a square n× n-matrix. The characteristic polynomial of A is

pA(λ) = (−1)n det(A− λI) = det(λI − A).

We will prove in the next theorem 2.4, that it is uniquely defined by an operator, i.e. if we

take two different matrices of operator, the characteristic polynomial will be the same for both

of them.

Remark 2.3. (−1)n before determinant is needed to have positive sign before λn in the poly-

nomial. But sometimes we will omit (−1)n before determinant. We need only roots of this

polynomial, so change of the sign doesn’t affect them.

If we have an operator, we may wish to define a characteristic polynomial of it as a charac-

teristic polynomial of its matrix in some basis. The problem is that we don’t know which basis

should we choose. The following theorem shows that the choose of basis doesn’t matter.

Theorem 2.4. If A and B are 2 matrices of a linear operator, i.e. there exists an invertible

matrix C such that

B = C−1AC,

then characteristic polynomials of A and B are the same.

Proof.

pB(λ) = det(B − λI)

= det(C−1AC − λI)

= det(C−1AC − C−1λIC)

= det(C−1(A− λI)C)

= det((A− λI)CC−1)

= det(A− λI)

= pA(λ).
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This theorem allows us to define a characteristic polynomial of the operator without choosing

a particular basis.

Now our goal is to understand whether the operator is diagonalizable or not. Of course we

can compute its eigenvalues. If there are n different eigenvalues, then the following theorem

will show us that in this case there will be n linearly independent eigenvectors, and the basis

with respect to which the operator is diagonal is just a basis, which consists of the eigenvectors.

Theorem 2.5. Eigenvectors corresponding to different eigenvalues are linearly independent.

Proof. The proof goes by induction. Let λ1, λ2, . . . , λk be eigenvalues and corresponding eigen-

vectors are linearly independent, i.e. if e1, e2, . . . , en are eigenvectors such that A(ei) = λiei for

all i = 1, . . . , k, and

d1e1 + d2e2 + · · ·+ dkek = 0

then di = 0 for all i’s.

Let we add another eigenvalue λk+1 and corresponding eigenvector ek+1, such that A(ek+1) =

λk+1ek+1. We’ll prove that vectors e1, e2, . . . , ek, ek+1 are still linearly independent. Let’s con-

sider a linear combination of them which is equal to 0:

c1e1 + c2e2 + · · ·+ ckek + ck+1ek+1 = 0. (3)

Now we can apply a linear operator to both sides of this equality:

A(c1e1) + A(c2e2) + · · ·+ A(ckek) + A(ck+1ek+1) = 0.

This is equivalent to

c1A(e1) + c2A(e2) + · · ·+ ckA(ek) + ck+1A(ek+1) = 0,

and since they are eigenvectors, i.e. A(ei) = λiei, we have

c1λ1e1 + c2λ2e2 + · · ·+ ckλkek + ck+1λk+1ek+1 = 0. (4)

Now, let’s multiply the equality (3) by λk+1, and subtract from (4). We’ll have:

c1(λ1 − λk+1)e1 + c2(λ2 − λk+1)e2 + · · ·+ ck(λk − λk+1)ek = 0.

(note, that we don’t have term with ek+1 anymore!). But λk+1 6= λi, i = 1, . . . , k. So, if ci 6= 0,

for all i’s, we got a nontrivial linear combination of e1, e2, . . . , ek which is equal to zero, and

vectors e1, e2, . . . , ek are not linearly independent. But they are linearly independent! Thus, all

ci’s are equal to 0, and vectors e1, e2, . . . , ek, ek+1 are linearly independent.

So, now we can specify the main corollary of this theorem.

Corollary 2.6. Let A be a linear operator in the space V . If the characteristic polynomial

of A has n different roots, then A is diagonalizable with respect to basis, which consists of

eigenvectors.
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Now we will see, that even if there are no n different roots, then there may exist a basis of

eigenvectors.

Example 2.7. Let A =

(
1 0

0 1

)
. Then A− λI =

(
1− λ 0

0 1− λ

)
, so

pA(λ) = (λ− 1)2.

Thus, there exist only one eigenvalue λ = 1. Subtracting λ = 1 from diagonal elements of A we

get zero matrix. So, each vector is an eigenvector of A, and thus of course there exists a basis,

consisting of eigenvectors, i.e e1 = (1, 0), and e2 = (0, 1).

Example 2.8. Let A =

(
1 1

0 1

)
. Then A− λI =

(
1− λ 1

0 1− λ

)
, so

pA(λ) = (λ− 1)2.

Thus, there exist only one eigenvalue λ = 1. Subtracting λ = 1 from diagonal elements of A

we get

(
0 1

0 0

)
. The corresponding system is

{
0x1 + x2 = 0

0x1 + 0x2 = 0

So, there are no 2 linearly independent eigenvectors, because all eigenvectors have form (c, 0).

So, there is no basis, consisting of eigenvectors, and thus this operator is not diagonalizable.

3 Formulae for the characteristic polynomials of 2 × 2-

and 3× 3-matrices

Let A =

(
a b

c d

)
. Then the characteristic polynomial is equal to:

det(A− λI) =

∣∣∣∣∣
a− λ b

c d− λ

∣∣∣∣∣
= (a− λ)(d− λ)− bc

= λ2 − (a + d)λ + (ad− bc)

= λ2 − (tr A)λ + det A.

Recall, that by tr A we denote the sum of diagonal elements of A, trace of the matrix A.
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In the same way we can get a formula for the characteristic polynomial of a 3 × 3-matrix.

Here, by A11, A22 and A33 we denote the cofactors of a11, a22, and a33 correspondingly. So, if

A =




a b c

d e f

g h i


 ,

then we have

A11 =

∣∣∣∣∣
e f

h i

∣∣∣∣∣ , A22 =

∣∣∣∣∣
a c

g i

∣∣∣∣∣ , A33 =

∣∣∣∣∣
a b

d e

∣∣∣∣∣ ,

and the characteristic polynomial is equal to

pA(λ) = λ3 − (tr A)λ2 + (A11 + A22 + A33)λ− det A.
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